

(12) United States Patent

Harada et al.

US 6,426,258 B1 (10) Patent No.:

(45) Date of Patent: Jul. 30, 2002

(54)	METHOD OF MANUFACTURING A
	SEMICONDUCTOR INTEGRATED CIRCUIT
	DEVICE

(75) Inventors: Hirofumi Harada; Jun Osanai, both

of Chiba (JP)

- Assignee: Seiko Instruments Inc. (JP)
- Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

- Appl. No.: 09/219,997
- Dec. 23, 1998 (22)Filed:

(30)Foreign Application Priority Data

Dec.	24, 1997	(JP) 9-355540
(51)	Int. Cl. ⁷	H01L 21/336
(52)	U.S. Cl.	

438/282, 289, 291, 252, 302

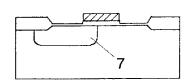
(56)**References Cited**

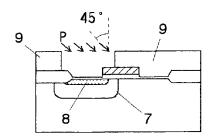
U.S. PATENT DOCUMENTS

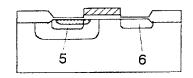
4,417,385 A	* 11/1983	Temple 438/268
5,270,227 A	* 12/1993	Kameyama et al 437/35
5,409,848 A	* 4/1995	Han et al 437/35
5,508,217 A	* 4/1996	Sawada 438/138
5,538,909 A	* 7/1996	Hsu 437/35
5,650,347 A	* 7/1997	Choi 437/44
5,712,814 A	* 1/1998	Fratin et al 365/182
5,731,611 A	* 3/1998	Hshieh et al 257/341
5,830,788 A	* 11/1998	Hiroki et al 438/199

5,885,886 A	*	3/1999	Lee	438/528
5,915,185 A	*	6/1999	Fratin et al	438/302
5,920,776 A	*	7/1999	Fratin et al	438/257
5,933,733 A	*	8/1999	Ferla et al	438/268
6,078,081 A	計	6/2000	Lee	257/344
6,083,794 A	*	7/2000	Hook et al	438/286

^{*} cited by examiner


Primary Examiner—Michael Trinh


(74) Attorney, Agent, or Firm—Adams & Wilks


(57)**ABSTRACT**

A method of manufacturing a semiconductor integrated circuit device comprises forming a gate insulating film on a surface of a semiconductor substrate of a first conductivity type, forming a polycrystal silicon film on the gate insulating film, etching the polycrystal silicon film to form a gate electrode on a portion of the gate insulating film, etching the gate insulating film except at the portion thereof where the gate electrode has been formed, and forming a thermal oxide film on the semiconductor substrate at regions corresponding to the etched gate insulating film. Impurities of a second conductivity type are implanted into a source region in the semiconductor substrate through the thermal oxide film to form a body region of the second conductivity type. The semiconductor substrate is then heated at a temperature of 1000° C. or higher. Impurities of the first conductivity type are then implanted into the body region at an inclination angle equal to or greater than 7° with respect to a line perpendicular to the surface of the semiconductor substrate so that the impurities of the first conductivity type are implanted to a depth from the surface of the semiconductor substrate which is less than a depth of the source region from the surface of the semiconductor substrate.

6 Claims, 8 Drawing Sheets

